1,080=(2x^2+10x-64)

Simple and best practice solution for 1,080=(2x^2+10x-64) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1,080=(2x^2+10x-64) equation:



1.080=(2x^2+10x-64)
We move all terms to the left:
1.080-((2x^2+10x-64))=0
We add all the numbers together, and all the variables
-((2x^2+10x-64))+1.08=0
We calculate terms in parentheses: -((2x^2+10x-64)), so:
(2x^2+10x-64)
We get rid of parentheses
2x^2+10x-64
Back to the equation:
-(2x^2+10x-64)
We get rid of parentheses
-2x^2-10x+64+1.08=0
We add all the numbers together, and all the variables
-2x^2-10x+65.08=0
a = -2; b = -10; c = +65.08;
Δ = b2-4ac
Δ = -102-4·(-2)·65.08
Δ = 620.64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-\sqrt{620.64}}{2*-2}=\frac{10-\sqrt{620.64}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+\sqrt{620.64}}{2*-2}=\frac{10+\sqrt{620.64}}{-4} $

See similar equations:

| 2(x+6)=19 | | 2(x^2+5x+390)=0 | | 1,080=2x^2+10x-64 | | 4x^2+28x+55=0 | | 10-36=3(x-7) | | 4x^2+55=-28x | | 2-(x-2)=1/10(x+1) | | 8+(-5/w)=11 | | (8^3x+1)=2^x | | 3=6y+6 | | -15=2n-4-5 | | X+3+2x-1+4x-3=180 | | 5 z= 10 | | 5(x+5)-(8x-5=51 | | 3+x=-3x+2(3=2x) | | 2x+4=3+5x | | 3x+8=2-2 | | 7x-3=3-7x | | 4^x+3^x=91^×/3 | | 3x+12=180X | | e/6=4 | | A2+a=0 | | 2x+5=6+54/6 | | A2+2a-35=0 | | N2-3n-28=0 | | A2+a=5a+32 | | (-2)^3(-x-4)-2-3^2=-2(x-4)-x | | 5x−81=79 | | -12(a-20=-50 | | A+b+45=180 | | x/6+2/6=7 | | X2-45x-90=0 |

Equations solver categories